Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex

نویسندگان

  • Vincenzo De Paola
  • Anthony Holtmaat
  • Graham Knott
  • Sen Song
  • Linda Wilbrecht
  • Pico Caroni
  • Karel Svoboda
چکیده

We imaged axons in layer (L) 1 of the mouse barrel cortex in vivo. Axons from thalamus and L2/3/5, or L6 pyramidal cells were identified based on their distinct morphologies. Their branching patterns and sizes were stable over times of months. However, axonal branches and boutons displayed cell type-specific rearrangements. Structural plasticity in thalamocortical afferents was mostly due to elongation and retraction of branches (range, 1-150 microm over 4 days; approximately 5% of total axonal length), while the majority of boutons persisted for up to 9 months (persistence over 1 month approximately 85%). In contrast, L6 axon terminaux boutons were highly plastic (persistence over 1 month approximately 40 %), and other intracortical axon boutons showed intermediate levels of plasticity. Retrospective electron microscopy revealed that new boutons make synapses. Our data suggest that structural plasticity of axonal branches and boutons contributes to the remodeling of specific functional circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia.

The formation and stability of dendritic spines on excitatory cortical neurons are correlated with adult visual plasticity, yet how the formation, loss, and stability of postsynaptic spines register with that of presynaptic axonal varicosities is unknown. Monocular deprivation has been demonstrated to increase the rate of formation of dendritic spines in visual cortex. However, we find that mon...

متن کامل

Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo

Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics. However, spines and boutons do not always bear synapses, some may contain more than one, and dendritic shaft synapses have no clear structural proxies. In...

متن کامل

Activity-Dependent Axonal Plasticity in Sensory Systems

The rodent whisker-to-barrel cortex pathway is a classic model to study the effects of sensory experience and deprivation on neuronal circuit formation, not only during development but also in the adult. Decades of research have produced a vast body of evidence highlighting the fundamental role of neuronal activity (spontaneous and/or sensory-evoked) for circuit formation and function. In this ...

متن کامل

Focal damage to the adult rat neocortex induces wound healing accompanied by axonal sprouting and dendritic structural plasticity.

Accumulating evidence indicates that damage to the adult mammalian brain evokes an array of adaptive cellular responses and may retain a capacity for structural plasticity. We have investigated the cellular and architectural alterations following focal experimental brain injury, as well as the specific capacity for structural remodeling of neuronal processes in a subset of cortical interneurons...

متن کامل

Size-Dependent Axonal Bouton Dynamics following Visual Deprivation In Vivo

Persistent synapses are thought to underpin the storage of sensory experience, yet little is known about their structural plasticity in vivo. We investigated how persistent presynaptic structures respond to the loss of primary sensory input. Using in vivo two-photon (2P) imaging, we measured fluctuations in the size of excitatory axonal boutons in L2/3 of adult mouse visual cortex after monocul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2006